Selected representative work from the lab (see also Google Scholar )
-
Learning ecosystem-scale dynamics from microbiome data with MDSINE2
T.E. Gibson, Y. Kim, S. Acharya, D.E. Kaplan, N. DiBenedetto, R. Lavin, B. Berger, J.R. Allegretti, L. Bry, G.K. Gerber
Nature Microbiology, 2025
-
Longitudinal profiling of low-abundance strains in microbiomes with ChronoStrain
Y. Kim, C.J. Worby, S. Acharya, L.R. van Dijk, D. Alfonsetti, Z. Gromko, P. Azimzadeh, K. Dodson, G. Gerber, S.J. Hultgren, A.M. Earl, B.A. Berger and T.E. Gibson
Nature Microbiology, 2025
-
On the stability of gradient descent with second order dynamics for time-varying cost functions
T.E. Gibson, S. Acharya, A. Parashar, J.E. Gaudio, A.M. Annaswamy
Transactions on Machine Learning Research, 2025
-
Accelerated Learning with Robustness to Adversarial Regressors
J.E. Gaudio, A.M. Annaswamy, J.M. Moreu, M.A. Bolender, T.E. Gibson
Conference on Learning for Dynamics and Control, 2021
-
Dynamic Modulation of the Gut Microbiota and Metabolome by Bacteriophages in a Mouse Model
B.B. Hsu, T.E. Gibson, V. Yeliseyev, Q. Liu, L. Bry, P.A. Silver, G.K. Gerber
Cell Host and Microbe, 2019
-
Robust and Scalable Models of Microbiome Dynamics
T.E. Gibson, G.K. Gerber
International Conference on Machine Learning, 2018
-
Convergence Properties of Adaptive Systems and the Definition of Exponential Stability
B.M. Jenkins, A.M. Annaswamy, E. Lavretsky, and T.E. Gibson
SIAM Journal on Control and Optimization, 2018
-
Universality of human microbial dynamics
A. Bashan, T.E. Gibson, J. Friedman, V.J. Carey, S.T. Weiss, E.L. Hohmann and Y.-Y. Liu
Nature, 2016